Im not sure what you mean Mr. Mudd. I love the Raptor and other new jets. I just think people need to be honest when it comes to costs. Not that its easy to do with all the #s thrown about.
LOL To pair me up with BigVette IS cruel and unusual punishment. LOL
And I thougt I made it quite clear that the vast majority of the approx. 900 A/B/C/D F-15s built* are over-the-hill and certainly by the USAF own admission no longer cost effective to maintain. The USN has even worse problems with the F-14 although they have approx. 100 left that are between 12 and 17 years old. Im looking to find out when F-15C production stopped I think it was around 1987 as that is when the first E went into squadron service.** Apparently C/D production ended 1992.("As F-15C/D ended production in 1992")
* F-15A 373 initial USAF single seaters (including 18 "YF-15As")
F-15B 59 initial USAF tandem seaters (including 2 TF-15As)
F-15C 408 improved USAF single seaters
F-15D 62 improved USAF tandem seaters
**"The first production "F-15E" performed its first flight on 11 December 1986. It was painted overall charcoal gray, which would become the standard color scheme for the Strike Eagle. Initial delivery to the USAF was on 12 April 1988, leading to initial operational capability in 1989."
Here is some intersting commentary from FAS:
The F-15C has an air combat victory ratio of 95-0 making it one of the most effective air superiority aircraft ever developed. The US Air Force claims the F-15C is in several respects inferior to, or at best equal to, the MiG-29, Su-27, Su-35/37, Rafale, and EF-2000, which are variously superior in acceleration, maneuverability, engine thrust, rate of climb, avionics, firepower, radar signature, or range. Although the F-15C and Su-27P series are similar in many categories, the Su-27 can outperform the F-15C at both long and short ranges. In long-range encounters, with its superiorr radar the Su-27 can launch a missile before the F-15C does, so from a purely kinematic standpoint, the Russian fighters outperform the F-15C in the beyond-visual-range fight. The Su-35 phased array radar is superior to the APG-63 Doppler radar in both detection range and tracking capabilities. Additionally, the Su-35 propulsion system increases the aircraft’s maneuverability with thrust vectoring nozzles. Simulations conducted by British Aerospace and the British Defense Research Agency compared the effectiveness of the F-15C, Rafale, EF-2000, and F-22 against the Russian Su-35 armed with active radar missiles similar to the AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM). The Rafale achieved a 1:1 kill ratio (1 Su-35 destroyed for each Rafale lost). The EF-2000 kill ratio was 4.5:1 while the F-22 achieved a ratio of 10:1. In stark contrast was the F-15C, losing 1.3 Eagles for each Su-35 destroyed.
I UNDERSTAND THE F-15 RATIO IS NOW 101-0.
The F-15 initial operational requirement was for a service life of 4,000 hours. Testing completed in 1973 demonstrated that the F-15 could sustain 16,000 hours of flight. Subsequently operational use was more severely stressful than the original design specification. With an average usage of 270 aircraft flight hours per year, by the early 1990s the F-15C fleet was approaching its service-design-life limit of 4,000 flight hours. Following successful airframe structural testing, the F-15C was extended to an 8,000-hour service life limit. An 8,000-hour service limit provides current levels of F-15Cs through 2010. The F-22 program was initially justified on the basis of an 8,000 flight hour life projection for the F-15. This was consistent with the projected lifespan of the most severely stressed F-15Cs, which have averaged 85% of flight hours in stressful air-to-air missions, versus the 48% in the original design specification.
Full-scale fatigue testing between 1988 and 1994 ended with a demonstration of over 7,600 flight hours for the most severely used aircraft, and in excess of 12,000 hours on the remainder of the fleet. A 10,000-hour service limit would provide F-15Cs to 2020, while a 12,000-hour service life extends the F-15Cs to the year 2030. The APG-63 radar, F100-PW-100 engines, and structure upgrades are mandatory. The USAF cannot expect to fly the F-15C to 2014, or beyond, without replacing these subsystems. The total cost of the three retrofits would be under $3 billion. The upgrades would dramatically reduce the 18 percent breakrate prevalent in the mid-1990s, and extend the F-15C service life well beyond 2014.
The F-15E structure is rated at 16,000 flight hours, double the lifetime of earlier F-15s.
Edited by - rickusn on Aug 01 2004 07:44 AM
|